Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.365
1.
Cells ; 13(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38727276

In mammals, hearing loss is irreversible due to the lack of the regenerative capacity of the auditory epithelium. However, stem/progenitor cells in mammalian cochleae may be a therapeutic target for hearing regeneration. The ubiquitin proteasome system plays an important role in cochlear development and maintenance. In this study, we investigated the role of ubiquitin C-terminal hydrolase L1 (UCHL1) in the process of the transdifferentiation of auditory supporting cells (SCs) into hair cells (HCs). The expression of UCHL1 gradually decreased as HCs developed and was restricted to inner pillar cells and third-row Deiters' cells between P2 and P7, suggesting that UCHL1-expressing cells are similar to the cells with Lgr5-positive progenitors. UCHL1 expression was decreased even under conditions in which supernumerary HCs were generated with a γ-secretase inhibitor and Wnt agonist. Moreover, the inhibition of UCHL1 by LDN-57444 led to an increase in HC numbers. Mechanistically, LDN-57444 increased mTOR complex 1 activity and allowed SCs to transdifferentiate into HCs. The suppression of UCHL1 induces the transdifferentiation of auditory SCs and progenitors into HCs by regulating the mTOR pathway.


Cell Transdifferentiation , Hair Cells, Auditory , Signal Transduction , TOR Serine-Threonine Kinases , Ubiquitin Thiolesterase , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Cell Transdifferentiation/drug effects , TOR Serine-Threonine Kinases/metabolism , Animals , Hair Cells, Auditory/metabolism , Hair Cells, Auditory/cytology , Mice , Labyrinth Supporting Cells/metabolism , Labyrinth Supporting Cells/cytology , Indoles , Oximes
2.
Front Immunol ; 15: 1379586, 2024.
Article En | MEDLINE | ID: mdl-38745648

Objective: Choroidal neovascularization (CNV) represents the predominant form of advanced wet Age-related Macular Degeneration (wAMD). Macrophages play a pivotal role in the pathological progression of CNV. Meteorin-like (Metrnl), a novel cytokine known for its anti-inflammatory properties in macrophages, is the focus of our investigation into its mechanism of action and its potential to impede CNV progression. Methods: Cell viability was evaluated through CCK-8 and EdU assays following Metrnl treatment. Expression levels of inflammatory cytokines and proteins were assessed using quantitative reverse-transcription polymerase chain reaction(qRT-PCR), enzyme-linked immunosorbent assay (ELISA), and western blot techniques. Protein-protein interactions were identified through protein mass spectrometry and co-immunoprecipitation (Co-IP). Additionally, in vivo and in vitro neovascularization models were employed to evaluate angiogenesis. Results: Our results revealed downregulated Metrnl levels in the choroid-sclera complex of CNV mice, the aqueous humor of wAMD patients, and activated macrophages. Metrnl overexpression demonstrated a reduction in pro-inflammatory cytokine production, influenced endothelial cell function, and suppressed angiogenesis in choroid explants and CNV models. Through protein mass spectrometry and Co-IP, we confirmed Metrnl binds to UCHL-1 to modulate the NF-κB signaling pathway. This interaction inhibited the transcription and expression of pro-inflammatory cytokines, ultimately suppressing angiogenesis. Conclusion: In summary, our findings indicate that Metrnl down-regulates macrophage pro-inflammatory cytokine secretion via the UCHL-1/NF-κB signaling pathway. This mechanism alleviates the inflammatory microenvironment and effectively inhibits choroidal neovascularization.


Choroidal Neovascularization , NF-kappa B , Signal Transduction , Choroidal Neovascularization/metabolism , Choroidal Neovascularization/pathology , Choroidal Neovascularization/genetics , Animals , Mice , Humans , NF-kappa B/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Disease Models, Animal , Mice, Inbred C57BL , Macrophages/metabolism , Macrophages/immunology , Choroid/metabolism , Choroid/pathology , Choroid/blood supply , Male , Wet Macular Degeneration/metabolism , Wet Macular Degeneration/genetics , Wet Macular Degeneration/pathology , Inflammation/metabolism , Cytokines/metabolism
3.
J Clin Invest ; 134(9)2024 Mar 12.
Article En | MEDLINE | ID: mdl-38690732

Epigenetic regulatory mechanisms are underappreciated, yet are critical for enteric nervous system (ENS) development and maintenance. We discovered that fetal loss of the epigenetic regulator Bap1 in the ENS lineage caused severe postnatal bowel dysfunction and early death in Tyrosinase-Cre Bap1fl/fl mice. Bap1-depleted ENS appeared normal in neonates; however, by P15, Bap1-deficient enteric neurons were largely absent from the small and large intestine of Tyrosinase-Cre Bap1fl/fl mice. Bowel motility became markedly abnormal with disproportionate loss of cholinergic neurons. Single-cell RNA sequencing at P5 showed that fetal Bap1 loss in Tyrosinase-Cre Bap1fl/fl mice markedly altered the composition and relative proportions of enteric neuron subtypes. In contrast, postnatal deletion of Bap1 did not cause enteric neuron loss or impaired bowel motility. These findings suggest that BAP1 is critical for postnatal enteric neuron differentiation and for early enteric neuron survival, a finding that may be relevant to the recently described human BAP1-associated neurodevelopmental disorder.


Cell Differentiation , Enteric Nervous System , Tumor Suppressor Proteins , Ubiquitin Thiolesterase , Animals , Enteric Nervous System/metabolism , Enteric Nervous System/pathology , Mice , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Neurons/metabolism , Neurons/pathology , Mice, Knockout , Female , Gastrointestinal Motility/genetics , Humans
4.
Proc Natl Acad Sci U S A ; 121(21): e2322923121, 2024 May 21.
Article En | MEDLINE | ID: mdl-38739798

The ubiquitin-proteasome system is essential to all eukaryotes and has been shown to be critical to parasite survival as well, including Plasmodium falciparum, the causative agent of the deadliest form of malarial disease. Despite the central role of the ubiquitin-proteasome pathway to parasite viability across its entire life-cycle, specific inhibitors targeting the individual enzymes mediating ubiquitin attachment and removal do not currently exist. The ability to disrupt P. falciparum growth at multiple developmental stages is particularly attractive as this could potentially prevent both disease pathology, caused by asexually dividing parasites, as well as transmission which is mediated by sexually differentiated parasites. The deubiquitinating enzyme PfUCHL3 is an essential protein, transcribed across both human and mosquito developmental stages. PfUCHL3 is considered hard to drug by conventional methods given the high level of homology of its active site to human UCHL3 as well as to other UCH domain enzymes. Here, we apply the RaPID mRNA display technology and identify constrained peptides capable of binding to PfUCHL3 with nanomolar affinities. The two lead peptides were found to selectively inhibit the deubiquitinase activity of PfUCHL3 versus HsUCHL3. NMR spectroscopy revealed that the peptides do not act by binding to the active site but instead block binding of the ubiquitin substrate. We demonstrate that this approach can be used to target essential protein-protein interactions within the Plasmodium ubiquitin pathway, enabling the application of chemically constrained peptides as a novel class of antimalarial therapeutics.


Peptides , Plasmodium falciparum , Protozoan Proteins , Ubiquitin Thiolesterase , Plasmodium falciparum/enzymology , Plasmodium falciparum/metabolism , Plasmodium falciparum/drug effects , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/genetics , Humans , Peptides/chemistry , Peptides/metabolism , Peptides/pharmacology , Protozoan Proteins/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/antagonists & inhibitors , Antimalarials/pharmacology , Antimalarials/chemistry , Ubiquitin/metabolism , Malaria, Falciparum/parasitology , Malaria, Falciparum/drug therapy
5.
FASEB J ; 38(10): e23653, 2024 May 31.
Article En | MEDLINE | ID: mdl-38738548

Hypoxic preconditioning has been recognized as a promotive factor for accelerating cutaneous wound healing. Our previous study uncovered that exosomal lncRNA H19, derived from adipose-derived stem cells (ADSCs), plays a crucial role in orchestrating cutaneous wound healing. Herein, we aimed to explore whether there is a connection between hypoxia and ADSC-derived exosomes (ADSCs-exos) in cutaneous wound healing. Exosomes extracted from ADSCs under normoxic and hypoxic conditions were identified using transmission electron microscope (TEM) and particle size analysis. The effects of ADSCs-exos on the proliferation, migration, and angiogenesis of human umbilical vein endothelial cells (HUVECs) were evaluated by CCK-8, EdU, wound healing, and tube formation assays. Expression patterns of H19, HIF-1α, and USP22 were measured. Co-immunoprecipitation, chromatin immunoprecipitation, ubiquitination, and luciferase reporter assays were conducted to confirm the USP22/HIF-1α/H19 axis, which was further validated in a mice model of skin wound. Exosomes extracted from hypoxia-treated ADSCs (termed as H-ADSCs-exos) significantly increased cell proliferation, migration, and angiogenesis in H2O2-exposed HUVECs, and promoted cutaneous wound healing in vivo. Moreover, H-ADSCs and H-ADSCs-exos, which exhibited higher levels of H19, were found to be transcriptionally activated by HIF-1α. Mechanically, H-ADSCs carrying USP22 accounted for deubiquitinating and stabilizing HIF-1α. Additionally, H-ADSCs-exos improved cell proliferation, migration, and angiogenesis in H2O2-triggered HUVECs by activating USP22/HIF-1α axis and promoting H19 expression, which may provide a new clue for the clinical treatment of cutaneous wound healing.


Exosomes , Human Umbilical Vein Endothelial Cells , Hypoxia-Inducible Factor 1, alpha Subunit , RNA, Long Noncoding , Ubiquitin Thiolesterase , Wound Healing , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Exosomes/metabolism , Humans , Animals , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mice , Human Umbilical Vein Endothelial Cells/metabolism , Cell Proliferation , Adipose Tissue/metabolism , Adipose Tissue/cytology , Male , Up-Regulation , Stem Cells/metabolism , Cell Movement , Skin/metabolism , Cell Hypoxia , Mice, Inbred C57BL
6.
Molecules ; 29(9)2024 May 04.
Article En | MEDLINE | ID: mdl-38731625

Upon a variety of environmental stresses, eukaryotic cells usually recruit translational stalled mRNAs and RNA-binding proteins to form cytoplasmic condensates known as stress granules (SGs), which minimize stress-induced damage and promote stress adaptation and cell survival. SGs are hijacked by cancer cells to promote cell survival and are consequently involved in the development of anticancer drug resistance. However, the design and application of chemical compounds targeting SGs to improve anticancer drug efficacy have rarely been studied. Here, we developed two types of SG inhibitory peptides (SIPs) derived from SG core proteins Caprin1 and USP10 and fused with cell-penetrating peptides to generate TAT-SIP-C1/2 and SIP-U1-Antp, respectively. We obtained 11 SG-inducing anticancer compounds from cell-based screens and explored the potential application of SIPs in overcoming resistance to the SG-inducing anticancer drug sorafenib. We found that SIPs increased the sensitivity of HeLa cells to sorafenib via the disruption of SGs. Therefore, anticancer drugs which are competent to induce SGs could be combined with SIPs to sensitize cancer cells, which might provide a novel therapeutic strategy to alleviate anticancer drug resistance.


Antineoplastic Agents , Sorafenib , Stress Granules , Humans , Sorafenib/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Stress Granules/metabolism , HeLa Cells , Drug Resistance, Neoplasm/drug effects , Peptides/pharmacology , Peptides/chemistry , Cell Survival/drug effects , Ubiquitin Thiolesterase/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Cell Line, Tumor , Cell-Penetrating Peptides/pharmacology , Cell-Penetrating Peptides/chemistry
7.
J Cancer Res Clin Oncol ; 150(4): 204, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38642144

BACKGROUND: Emerging research has validated that circular RNAs (circRNAs) have indispensable regulatory functions in tumorigenesis, including colorectal cancer (CRC). Ferroptosis is a specific cell death form and implicates in the malignant progression of tumors. Here, this study aimed to investigate the biofunction of circ_0087851 in tumor progression and ferroptosis of CRC, as well as its underlying molecular mechanism. METHODS: The expression pattern of circ_0087851 in CRC was validated by qRT-PCR. The biological characteristics of circ_0087851 in CRC were assessed through CCK-8, colony formation and transwell assays in vitro. The ferroptosis was measured using ferroptosis-related reagents on iron, Fe2+, and lipid ROS detection. Bioinformatics, luciferase reporter, and RNA pulldown assays were employed to reveal the circ_0087851-mediated regulatory network. In addition, the effect of circ_0087851 on tumor growth in vivo was detected using a xenograft model. RESULTS: Circ_0087851 was notably diminished in CRC tissues and cells. Functionally, overexpression of circ_0087851 suppressed CRC cell growth, migration, invasion, and facilitated ferroptosis in vitro. Meanwhile, circ_0087851 upregulation impeded CRC growth in vivo. Mechanistically, circ_0087851 functioned as a molecular sponge for miR-593-3p, and BRCA1 associated protein 1 (BAP1) was identified as a downstream target of miR-593-3p. Besides, rescue experiments revealed that miR-593-3p overexpression or silencing of BAP1 reversed circ_0087851-mediated CRC progression. CONCLUSION: Circ_0087851 performed as a tumor suppressor and ferroptosis promoter by the miR-593-3p/BAP1 axis, providing novel biomarker and therapeutic target for the clinical management of CRC.


Colorectal Neoplasms , Ferroptosis , MicroRNAs , RNA, Circular , Humans , Carcinogenesis , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Ferroptosis/genetics , MicroRNAs/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , RNA, Circular/genetics
8.
Int J Biol Macromol ; 267(Pt 2): 131645, 2024 May.
Article En | MEDLINE | ID: mdl-38631582

Diet-induced obesity can cause metabolic syndromes. The critical link in disease progression is adipose tissue macrophage (ATM) recruitment, which drives low-level inflammation, triggering adipocyte dysfunction. It is unclear whether ubiquitin-specific proteinase 14 (USP14) affects metabolic disorders by mediating adipose tissue inflammation. In the present study, we showed that USP14 is highly expressed in ATMs of obese human patients and diet-induced obese mice. Mouse USP14 overexpression aggravated obesity-related insulin resistance by increasing the levels of pro-inflammatory ATMs, leading to adipose tissue inflammation, excessive lipid accumulation, and hepatic steatosis. In contrast, USP14 knockdown in adipose tissues alleviated the phenotypes induced by a high-fat diet. Co-culture experiments showed that USP14 deficiency in macrophages led to decreased adipocyte lipid deposition and enhanced insulin sensitivity, suggesting that USP14 plays an important role in ATMs. Mechanistically, USP14 interacted with TNF receptor-associated 6, preventing K48-linked ubiquitination as well as proteasome degradation, leading to increased pro-inflammatory polarization of macrophages. In contrast, the pharmacological inhibition of USP14 significantly ameliorated diet-induced hyperlipidemia and insulin resistance in mice. Our results demonstrated that macrophage USP14 restriction constitutes a key constraint on the pro-inflammatory M1 phenotype, thereby inhibiting obesity-related metabolic diseases.


Adipose Tissue , Diet, High-Fat , Insulin Resistance , Macrophages , Obesity , Ubiquitin Thiolesterase , Animals , Obesity/metabolism , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Macrophages/metabolism , Mice , Humans , Adipose Tissue/metabolism , Diet, High-Fat/adverse effects , Male , Adipocytes/metabolism , Inflammation/metabolism , Ubiquitination , Mice, Inbred C57BL
9.
J Virol ; 98(5): e0017724, 2024 May 14.
Article En | MEDLINE | ID: mdl-38563731

Cactin, a highly conserved protein, plays a crucial role in various physiological processes in eukaryotes, including innate immunity. Recently, the function of Cactin in the innate immunity of Drosophila has been explored, revealing that Cactin regulates a non-canonical signaling pathway associated with the Toll and Imd pathways via the Cactin-Deaf1 axis. In addition, Cactin exhibits specific antiviral activity against the Drosophila C virus (DCV) in Drosophila, with an unknown mechanism. During DCV infection, it has been confirmed that the protein level and antiviral activity of Cactin are regulated by ubiquitination. However, the precise ubiquitination and deubiquitination mechanisms of Cactin in Drosophila remain unexplored. In this study, we identified ubiquitin-specific protease 14 (Usp14) as a major deubiquitinase for Cactin through comprehensive deubiquitinase screening. Our results demonstrate that Usp14 interacts with the C_Cactus domain of Cactin via its USP domain. Usp14 efficiently removes K48- and K63-linked polyubiquitin chains from Cactin, thereby preventing its degradation through the ubiquitin-proteasome pathway. Usp14 significantly inhibits DCV replication in Drosophila cells by stabilizing Cactin. Moreover, Usp14-deficient fruit flies exhibit increased susceptibility to DCV infection compared to wild-type flies. Collectively, our findings reveal the regulation of ubiquitination and antiviral activity of Cactin by the deubiquitinase Usp14, providing valuable insights into the modulation of Cactin-mediated antiviral activity in Drosophila.IMPORTANCEViral infections pose a severe threat to human health, marked by high pathogenicity and mortality rates. Innate antiviral pathways, such as Toll, Imd, and JAK-STAT, are generally conserved across insects and mammals. Recently, the multi-functionality of Cactin in innate immunity has been identified in Drosophila. In addition to regulating a non-canonical signaling pathway through the Cactin-Deaf1 axis, Cactin exhibits specialized antiviral activity against the Drosophila C virus (DCV) with an unknown mechanism. A previous study emphasized the significance of the Cactin level, regulated by the ubiquitin-proteasome pathway, in modulating antiviral signaling. However, the regulatory mechanisms governing Cactin remain unexplored. In this study, we demonstrate that Usp14 stabilizes Cactin by preventing its ubiquitination and subsequent degradation. Furthermore, Usp14 plays a crucial role in regulating the antiviral function mediated by Cactin. Therefore, our findings elucidate the regulatory mechanism of Cactin in Drosophila, offering a potential target for the prevention and treatment of viral infections.


Drosophila Proteins , Immunity, Innate , Ubiquitination , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/virology , Drosophila melanogaster/metabolism , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Signal Transduction , Dicistroviridae/metabolism , Virus Replication , Drosophila/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/metabolism
11.
J Exp Clin Cancer Res ; 43(1): 124, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658954

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a common gastrointestinal tumor and has become an important global health problem. The PI3K/AKT signaling pathway plays a key role in the development of ESCC. CircRNAs have been reported to be involved in the regulation of the PI3K/AKT pathway, but the underlying mechanisms are unclear. Therefore, this study aimed to identify protein-coding circRNAs and investigate their functions in ESCC. METHODS: Differential expression of circRNAs between ESCC tissues and adjacent normal tissues was identified using circRNA microarray analysis. Thereafter, LC-MS/MS was used to identify circPDE5A-encoded novel protein PDE5A-500aa. Molecular biological methods were used to explore the biological functions and regulatory mechanisms of circPDE5A and PDE5A-500aa in ESCC. Lastly, circRNA-loaded nanoplatforms were constructed to investigate the therapeutic translation value of circPDE5A. RESULTS: We found that circPDE5A expression was down-regulated in ESCC cells and tissues and that it was negatively associated with advanced clinicopathological stages and poorer prognosis in ESCC. Functionally, circPDE5A inhibited ESCC proliferation and metastasis in vitro and in vivo by encoding PDE5A-500aa, a key regulator of the PI3K/AKT signaling pathway in ESCC. Mechanistically, PDE5A-500aa interacted with PIK3IP1 and promoted USP14-mediated de-ubiquitination of the k48-linked polyubiquitin chain at its K198 residue, thereby attenuating the PI3K/AKT pathway in ESCC. In addition, Meo-PEG-S-S-PLGA-based reduction-responsive nanoplatforms loaded with circPDE5A and PDE5A-500aa plasmids were found to successfully inhibit the growth and metastasis of ESCC in vitro and in vivo. CONCLUSION: The novel protein PDE5A-500aa encoded by circPDE5A can act as an inhibitor of the PI3K/AKT signaling pathway to inhibit the progression of ESCC by promoting USP14-mediated de-ubiquitination of PIK3IP1 and may serve as a potential target for the development of therapeutic agents.


Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , RNA, Circular , Ubiquitin Thiolesterase , Ubiquitination , Animals , Female , Humans , Male , Mice , Middle Aged , Cell Line, Tumor , Cell Proliferation , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 5/genetics , Disease Progression , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/genetics , Mice, Nude , Phosphatidylinositol 3-Kinases/metabolism , Prognosis , Proto-Oncogene Proteins c-akt/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Signal Transduction , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics
12.
Viruses ; 16(4)2024 Mar 22.
Article En | MEDLINE | ID: mdl-38675828

The innate immune response to viruses is formed in part by interferon (IFN)-induced restriction factors, including ISG15, p21, and SAMHD1. IFN production can be blocked by the ISG15-specific protease USP18. HIV-1 has evolved to circumvent host immune surveillance. This mechanism might involve USP18. In our recent studies, we demonstrate that HIV-1 infection induces USP18, which dramatically enhances HIV-1 replication by abrogating the antiviral function of p21. USP18 downregulates p21 by accumulating misfolded dominant negative p53, which inactivates wild-type p53 transactivation, leading to the upregulation of key enzymes involved in de novo dNTP biosynthesis pathways and inactivated SAMHD1. Despite the USP18-mediated increase in HIV-1 DNA in infected cells, it is intriguing to note that the cGAS-STING-mediated sensing of the viral DNA is abrogated. Indeed, the expression of USP18 or knockout of ISG15 inhibits the sensing of HIV-1. We demonstrate that STING is ISGylated at residues K224, K236, K289, K347, K338, and K370. The inhibition of STING K289-linked ISGylation suppresses its oligomerization and IFN induction. We propose that human USP18 is a novel factor that potentially contributes in multiple ways to HIV-1 replication.


HIV-1 , Ubiquitin Thiolesterase , Ubiquitins , Virus Replication , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Humans , HIV-1/physiology , HIV-1/genetics , Ubiquitins/metabolism , Ubiquitins/genetics , Cytokines/metabolism , Cytokines/genetics , Immunity, Innate , HIV Infections/virology , HIV Infections/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Host-Pathogen Interactions , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics
13.
Chin J Nat Med ; 22(4): 329-340, 2024 Apr.
Article En | MEDLINE | ID: mdl-38658096

The management of colorectal cancer (CRC) poses a significant challenge, necessitating the development of innovative and effective therapeutics. Our research has shown that notoginsenoside Ft1 (Ng-Ft1), a small molecule, markedly inhibits subcutaneous tumor formation in CRC and enhances the proportion of CD8+ T cells in tumor-bearing mice, thus restraining tumor growth. Investigation into the mechanism revealed that Ng-Ft1 selectively targets the deubiquitination enzyme USP9X, undermining its role in shielding ß-catenin. This leads to a reduction in the expression of downstream effectors in the Wnt signaling pathway. These findings indicate that Ng-Ft1 could be a promising small-molecule treatment for CRC, working by blocking tumor progression via the Wnt signaling pathway and augmenting CD8+ T cell prevalence within the tumor environment.


CD8-Positive T-Lymphocytes , Colorectal Neoplasms , Ubiquitin Thiolesterase , Wnt Signaling Pathway , Animals , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , CD8-Positive T-Lymphocytes/drug effects , Mice , Humans , Wnt Signaling Pathway/drug effects , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Cell Line, Tumor , Signal Transduction/drug effects , beta Catenin/metabolism , Mice, Inbred BALB C
14.
Cancer Genomics Proteomics ; 21(3): 252-259, 2024.
Article En | MEDLINE | ID: mdl-38670591

BACKGROUND/AIM: The term "calcified chondroid mesenchymal neoplasm" was introduced in 2021 to describe a group of tumors characterized by various morphological features, including the formation of cartilage or chondroid matrix. These tumors frequently carry chimeric genes where the 5'-end partner gene is fibronectin 1 and the 3'-end partner gene codes for receptor tyrosine kinase. Our study explores fusion of the genes platelet-derived growth factor receptor alpha (PDGFRA) and ubiquitin-specific peptidase 8 (USP8) in calcified chondroid mesenchymal neoplasm. CASE REPORT: Genetic investigations were conducted on a tumor located in the leg of a 71-year-old woman. G-banding analysis of short-term cultured tumor cells revealed the karyotype 46,XX,t(4;15)(q12;q21)[6]/46,XX[4]. RNA sequencing detected in-frame PDGFRA::USP8 and USP8::PDGFRA chimeric transcripts, which were validated by RT-PCR/Sanger sequencing. The PDGFRA::USP8 chimeric protein is predicted to have cell membrane location and functions as a chimeric ubiquitinyl hydrolase. The USP8::PDGFRA protein was predicted to be nuclear and function as a positive regulator of cellular metabolic process. CONCLUSION: We report, for the first time, a calcified chondroid mesenchymal neoplasm carrying a balanced t(4;15)(q12;q21) chromosomal translocation, resulting in the generation of both PDGFRA::USP8 and USP8::PDGFRA chimeras. The PDGFRA::USP8 protein is located on the cell membrane and functions as a chimeric ubiquitinyl hydrolase, activated by PDGFs. Conversely, USP8::PDGFRA is a nuclear protein regulating metabolic processes.


Receptor, Platelet-Derived Growth Factor alpha , Humans , Female , Aged , Receptor, Platelet-Derived Growth Factor alpha/genetics , Translocation, Genetic , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Calcinosis/genetics , Calcinosis/pathology , Chromosomes, Human, Pair 4/genetics
15.
Oncoimmunology ; 13(1): 2344905, 2024.
Article En | MEDLINE | ID: mdl-38659649

T cell immunity is critical for human defensive immune response. Exploring the key molecules during the process provides new targets for T cell-based immunotherapies. CMC1 is a mitochondrial electron transport chain (ETC) complex IV chaperon protein. By establishing in-vitro cell culture system and Cmc1 gene knock out mice, we evaluated the role of CMC1 in T cell activation and differentiation. The B16-OVA tumor model was used to test the possibility of targeting CMC1 for improving T cell anti-tumor immunity. We identified CMC1 as a positive regulator in CD8+T cells activation and terminal differentiation. Meanwhile, we found that CMC1 increasingly expressed in exhausted T (Tex) cells. Genetic lost of Cmc1 inhibits the development of CD8+T cell exhaustion in mice. Instead, deletion of Cmc1 in T cells prompts cells to differentiate into metabolically and functionally quiescent cells with increased memory-like features and tolerance to cell death upon repetitive or prolonged T cell receptor (TCR) stimulation. Further, the in-vitro mechanistic study revealed that environmental lactate enhances CMC1 expression by inducing USP7, mediated stabilization and de-ubiquitination of CMC1 protein, in which a mechanism we propose here that the lactate-enriched tumor microenvironment (TME) drives CD8+TILs dysfunction through CMC1 regulatory effects on T cells. Taken together, our study unraveled the novel role of CMC1 as a T cell regulator and its possibility to be utilized for anti-tumor immunotherapy.


CD8-Positive T-Lymphocytes , Mice, Knockout , Mitochondrial Proteins , Animals , Mice , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/immunology , Lymphocyte Activation/immunology , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Melanoma, Experimental/genetics , Mice, Inbred C57BL , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics
16.
Dev Comp Immunol ; 156: 105181, 2024 Jul.
Article En | MEDLINE | ID: mdl-38636698

Interferon regulatory factor 7 (IRF7) is considered the master regulator of virus-induced interferon (IFN) production. However, to avoid an autoimmune response, the expression of IRF7 must be tightly controlled. In this study, we report that zebrafish ubiquitin-specific protease 8 (USP8) promotes IRF7 degradation through an autophagy-lysosome-dependent pathway to inhibit IFN production. First, zebrafish usp8 is induced upon spring viremia of carp virus (SVCV) infection and polyinosinic/polycytidylic acid (poly I:C) stimulation. Second, overexpression of USP8 suppresses SVCV or poly I:C-mediated IFN expression. Mechanistically, USP8 interacts with IRF7 and promotes its degradation via an autophagy-lysosome-dependent pathway. Finally, USP8 significantly suppresses cellular antiviral responses and enhances SVCV proliferation. In summary, our discoveries offer a perspective on the role of zebrafish USP8 and provide additional understanding of the regulation of IRF7 in host antiviral immune response.


Autophagy , Interferon Regulatory Factor-7 , Interferon Regulatory Factors , Lysosomes , Rhabdoviridae , Zebrafish Proteins , Zebrafish , Animals , Zebrafish/immunology , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Autophagy/immunology , Lysosomes/metabolism , Interferon Regulatory Factor-7/metabolism , Interferon Regulatory Factor-7/genetics , Rhabdoviridae/physiology , Rhabdoviridae/immunology , Interferons/metabolism , Poly I-C/immunology , Rhabdoviridae Infections/immunology , Proteolysis , Fish Diseases/immunology , Fish Diseases/virology , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Humans , Immunity, Innate
17.
Clin Rheumatol ; 43(5): 1531-1540, 2024 May.
Article En | MEDLINE | ID: mdl-38507132

OBJECTIVE: Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with highly heterogeneous. The aim of this study is to find the key genes in peripheral blood mononuclear cells (PBMCs) of SLE patients and to provide a new direction for the diagnosis and treatment of lupus. METHODS: GSE121239, GSE50772, GSE81622, and GSE144390 mRNA expression profiles were obtained from the website of Gene Expression Omnibus (GEO), and differential expressed genes (DEGs) analysis was performed by R. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to elucidate signaling pathways for the DEGs. Real-time qPCR (RT-qPCR) was used to verify the key gene EPSTI1 in PBMCs of SLE patients. Finally, the correlation analysis and ROC curve analysis of EPSTI1 for SLE were performed. RESULTS: A total of 12 upregulated DEGs were identified, including MMP8, MX1, IFI44, EPSTI1, OAS1, OAS3, HERC5, IFIT1, RSAD2, USP18, IFI44L, and IFI27. GO and KEGG pathway enrichment analysis showed that those DEGs were mainly concentrated in the response to virus and IFN signaling pathways. Real-time qPCR (RT-qPCR) revealed that EPSTI1 was increased in PBMCs of SLE. EPSTI1 was positively correlated with SLEDAI score in SLE patients. Besides, EPSTI1 was positively correlated with T cell activation- or differentiation-associated genes (BCL6 and RORC). Furthermore, ROC analyses proved EPSTI1 may have diagnostic value for SLE. CONCLUSION: Together, EPSTI1 was found to be a potential biomarker for SLE, closely related to T cell immune imbalance. Key Points • EPSTI1 expression was significantly increased in PBMCs of SLE patients. • EPSTI1 was positively correlated with disease activity and T cell activation- or differentiation-associated genes in SLE patients. • EPSTI1 might have a good diagnostic value for SLE.


Leukocytes, Mononuclear , Lupus Erythematosus, Systemic , Humans , Leukocytes, Mononuclear/metabolism , Biomarkers/metabolism , Signal Transduction , Cell Differentiation , Lupus Erythematosus, Systemic/diagnosis , Lupus Erythematosus, Systemic/genetics , Computational Biology , Neoplasm Proteins , Ubiquitin Thiolesterase/metabolism
18.
J Sex Med ; 21(5): 479-493, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38521973

BACKGROUND: Neuroproliferative vestibulodynia (NPV), a provoked genital pain characterized by severe allodynia and hyperalgesia, is confirmed in excised vestibular tissue by immunohistochemical staining (>8 CD117-positive immunostained cells/100× microscopic field) rather than by hematoxylin and eosin staining. AIM: In this study we sought to assess immunostaining of tissue samples obtained during vestibulectomy surgery and to correlate results with patient outcomes. METHODS: Patients (n = 65) meeting criteria for NPV who underwent vestibulectomy during the period from June 2019 through December 2022 formed the study cohort. We performed assessment of pathology of vestibular tissues by use of immunohistochemical staining, including quantitation of mast cells by CD117 (mast cell marker) and nerve fibers by protein gene product (PGP) 9.5 (neuronal marker). We analyzed 725 photomicrographs of immunostained tissue sections (100× and 200×) by manual counting and computer-assisted histometry and correlated these data to clinical assessments. OUTCOMES: Outcomes included density of CD117 and PGP9.5 immunostaining in the 1:00-11:00 o'clock and 12:00 o'clock vestibular regions, and patient-reported outcomes assessing sexual function, pain, distress, and symptom improvement. RESULTS: All 65 NPV patients (median age 26 years), 45 with lifelong and 20 with acquired NPV, had severe pain documented by PROs and vulvoscopy and had >8 CD117-immunopositive cells/100× microscopic field. Median cell count values were similar in the 1:00-11:00 o'clock and 12:00 vestibular regions (28.5 and 29.5/100× field, respectively). Likewise, the marker) and nerve fibers by protein gene product (PGP) 9.5 (neuronal marker). We analyzed 725 photomicrographs of immunostained tissue sections (100× and 200×) by manual counting and computer-assisted histometry and correlated these data to clinical assessments. OUTCOMES: Outcomes included density of CD117 and PGP9.5 immunostaining in the 1:00-11:00 o'clock and 12:00 o'clock vestibular regions, and patient-reported outcomes assessing sexual function, pain, distress, and symptom improvement. RESULTS: All 65 NPV patients (median age 26 years), 45 with lifelong and 20 with acquired NPV, had severe pain documented by PROs and vulvoscopy and had >8 CD117-immunopositive cells/100× microscopic field. Median cell count values were similar in the 1:00-11:00 o'clock and 12:00 vestibular regions (28.5 and 29.5/100× field, respectively). Likewise, the median area of CD117 immunostaining was similar in both regions (0.69% and 0.73%). The median area of PGP9.5 immunostaining was 0.47% and 0.31% in these same regions. Pain scores determined with cotton-tipped swab testing were nominally higher in lifelong vs acquired NPV patients, reaching statistical significance in the 1:00-11:00 o'clock region (P < .001). The median score for the McGill Pain Questionnaire affective subscale dimension was also significantly higher in lifelong vs acquired NPV patients (P = .011). No correlations were observed between hematoxylin and eosin results and density of mast cells or neuronal markers. Of note, 63% of the patient cohort reported having additional conditions associated with aberrant mast cell activity. CLINICAL IMPLICATIONS: The pathology of NPV is primarily localized to the vestibular epithelial basement membrane and subepithelial stroma with no visible vulvoscopic findings, making clinical diagnosis challenging. STRENGTHS AND LIMITATIONS: Strengths of this study include the large number of tissues examined with what is to our knowledge the first-ever assessment of the 12:00 vestibule. Major limitations are specimens from a single timepoint within the disease state and lack of control tissues. CONCLUSIONS: Performing immunohistochemical staining of excised vestibular tissue with CD117 and PGP9.5 led to histometric confirmation of NPV, indications that NPV is a field disease involving all vestibular regions, validation for patients whose pain had been ignored and who had experienced negative psychosocial impact, and appreciation that such staining can advance knowledge.


Immunohistochemistry , Proto-Oncogene Proteins c-kit , Ubiquitin Thiolesterase , Vulvodynia , Humans , Female , Ubiquitin Thiolesterase/analysis , Ubiquitin Thiolesterase/metabolism , Vulvodynia/pathology , Adult , Proto-Oncogene Proteins c-kit/metabolism , Proto-Oncogene Proteins c-kit/analysis , Middle Aged , Mast Cells/pathology , Vestibule, Labyrinth/pathology , Patient Reported Outcome Measures , Nerve Fibers/pathology
19.
Cell Death Differ ; 31(5): 574-591, 2024 May.
Article En | MEDLINE | ID: mdl-38491202

Drug resistance in cancer therapy is the major reason for poor prognosis. Addressing this clinically unmet issue is important and urgent. In this study, we found that targeting USP24 by the specific USP24 inhibitors, USP24-i and its analogues, dramatically activated autophagy in the interphase and mitotic periods of lung cancer cells by inhibiting E2F4 and TRAF6, respectively. USP24 functional knockout, USP24C1695A, or targeting USP24 by USP24-i-101 inhibited drug resistance and activated autophagy in gefitinib-induced drug-resistant mice with doxycycline-induced EGFRL858R lung cancer, but this effect was abolished after inhibition of autophagy, indicating that targeting USP24-mediated induction of autophagy is required for inhibition of drug resistance. Genomic instability and PD-L1 levels were increased in drug resistant lung cancer cells and were inhibited by USP24-i-101 treatment or knockdown of USP24. In addition, inhibition of autophagy by bafilomycin-A1 significantly abolished the effect of USP24-i-101 on maintaining genomic integrity, decreasing PD-L1 and inhibiting drug resistance acquired in chemotherapy or targeted therapy. In summary, an increase in the expression of USP24 in cancer cells is beneficial for the induction of drug resistance and targeting USP24 by USP24-i-101 optimized from USP24-i inhibits drug resistance acquired during cancer therapy by increasing PD-L1 protein degradation and genomic stability in an autophagy induction-dependent manner.


Autophagy , Drug Resistance, Neoplasm , Ubiquitin Thiolesterase , Autophagy/drug effects , Humans , Drug Resistance, Neoplasm/drug effects , Animals , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/antagonists & inhibitors , Mice , Cell Line, Tumor , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics
20.
Biomed Pharmacother ; 174: 116459, 2024 May.
Article En | MEDLINE | ID: mdl-38518599

Ubiquitin-specific protease (USP), an enzyme catalyzing protein deubiquitination, is involved in biological processes related to metabolic disorders and cancer proliferation. We focused on constructing predictive models tailored to unveil compounds boasting USP21 inhibitory attributes. Six models, Extra Trees Classifier, Random Forest Classifier, LightGBM Classifier, XGBoost Classifier, Bagging Classifier, and a convolutional neural network harnessed from empirical data were selected for the screening process. These models guided our selection of 26 compounds from the FDA-approved drug library for further evaluation. Notably, nifuroxazide emerged as the most potent inhibitor, with a half-maximal inhibitory concentration of 14.9 ± 1.63 µM. The stability of protein-ligand complexes was confirmed using molecular modeling. Furthermore, nifuroxazide treatment of HepG2 cells not only inhibited USP21 and its established substrate ACLY but also elevated p-AMPKα, a downstream functional target of USP21. Intriguingly, we unveiled the previously unknown capacity of nifuroxazide to increase the levels of miR-4458, which was identified as downregulating USP21. This discovery was substantiated by manipulating miR-4458 levels in HepG2 cells, resulting in corresponding changes in USP21 protein levels in line with its predicted interaction with ACLY. Lastly, we confirmed the in vivo efficacy of nifuroxazide in inhibiting USP21 in mice livers, observing concurrent alterations in ACLY and p-AMPKα levels. Collectively, our study establishes nifuroxazide as a promising USP21 inhibitor with potential implications for addressing metabolic disorders and cancer proliferation. This multidimensional investigation sheds light on the intricate regulatory mechanisms involving USP21 and its downstream effects, paving the way for further exploration and therapeutic development.


Drug Repositioning , Hydroxybenzoates , Machine Learning , Nitrofurans , Humans , Nitrofurans/pharmacology , Animals , Drug Repositioning/methods , Hep G2 Cells , Hydroxybenzoates/pharmacology , Mice , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/metabolism
...